Welcome to H3 Maths

Blog Support for Growing Mathematicians

Putting a Face to Mathematics

April22

face recognitionIn less than a week H3 has had a retina scan for airport security plus a 15-point face scan for new drivers’ licences. How does this technology work and what role does Mathematics play in it?

Face recognition is the process of identifying one or more people in images or videos. Algorithms for face recognition typically extract facial features and compare them to a database to find the best match. Face recognition is an important part of many biometric, security, and surveillance systems, as well as image and video indexing systems. The Mathematics behind these systems uses complex, multiple algorithms to isolate and combine features in the images. For example, this picture shows the points used in a video stabilisation system. Researchers at Cornell U make the following comment about the background math in their recognition systems:

Video Stabilisation“When one thinks of face recognition, one immediately thinks of finding features of a face: eyes, nose, ears, cheek bones. But who’s to say that these are the most distinguishing characteristics of a face, and that they are the best features by which a face should be described? And what if these features are correlated? Instead of hard-coding features for detection, we decided to find the orthogonal features that most optimally describe our large training set by using Principal Component Analysis. This creates an orthogonal basis of principal components for our training set. The basis vectors are known as eigenfaces, and can be thought of as characteristic features of a face. All new faces will be described as a linear combination of these eigenfaces. This is equivalent to projecting the new face onto the subspace spanned by our eigenfaces. By using only the eigenfaces with the highest eigenvalues, we ensure that our projection maintains the most face-like energy from the image. This method was proposed by M. Turk and A. Pentland in 1991.”

by posted under Uncategorized | Comments Off on Putting a Face to Mathematics    

Comments are closed.

Post Support

Largest number between o and 1 million which does not contain the ‘n’ is 88

 

Rotation SAT Problem: Answer: 4 (see: https://www.youtube.com/watch?v=FUHkTs-Ipfg)

 

Which number has its letters in alphabetical order? Answer: F O R T Y

Hidden Rabbit? Clue: check the trees

How long for the stadium to fill? 45 minutes.

Where are you? the North Pole

Prize Object Puzzle: If Sue does not know where the prize is in the first question, it can’t be under the square. She must have been told it is under another shape. Apply this same logic to Colin. It is then obvious that the prize cannot be under a yellow object. That helps Sue eliminate her yellow shapes. Got the idea?

Algebra Puzzle: Answer = 1

Popular Math Problems Answers: 1, 1

Number of tabs? According to Lifehacker, the ideal number of tabs you should have open is nine. Yes, a single digit. To some, this is like playing a piano and only using a fraction of the notes!

Worst Graph? Where to start. What a visual mess and even some of the lines merge and are impossible to follow. A graph is a visual display of data, with the goal to identify trends or patterns. This is a spider’s web of information which fails to show a clear pattern at all. Solution? Well, different colors would help, or why not group in two or three graphs where trends are similar?

Number of different nets to make a cube is eleven – see this link

Homework Puzzle; The total value of the counters is 486, so halve this to get 243. Now, arrange the counters to equal this amount twice.

The graph on the left (Coronavirus) is for a time period of 30 days, while the one on the right (SARS) is for 8 months! Very poor graphical comparison and hardly relevant, unless it is attempting to downplay the seriousness of the coronavirus?

10 x 9 x 8 + (7 + 6) x 5 x 4 x (3 + 2) x 1 = 2020

NCEA Level 2 Algebra Problem. Using the information given, the shaded area = 9, that is:
y(y-8) = 9 –> y.y – 8y – 9 =0
–> (y-9)(y+1) = 0, therefore y = 9 (can’t have a distance of – 1 for the other solution for y)
Using the top and bottom of the rectangle,
x = (y-8)(y+2) = (9-8)(9+2) = 11
but, the left side = (x-4) = 11-4 = 7, but rhs = y+? = 9+?, which is greater than the value of the opp. side??
[I think that the left had side was a mistake and should have read (x+4)?]

Archives

H3 Viewers



Skip to toolbar