Welcome to H3 Maths

Blog Support for Growing Mathematicians

Flat out in 3 or 4 Dimensions…

August23

How many dimensions are there in our universe?
space_time
From 2009 (http://phys.org/news/2009-02-fourth-dimension.html):

“Creating a unified theory of quantum gravitation is often considered to be the “Holy Grail” of modern science.
danielDaniel Grumiller (left) from the Institute of Theoretical Physics, Vienna University of Technology, Austria, can now at least unravel some of the mysteries of quantum gravitation.

We perceive the space around us as three-dimensional. According to Einstein, time and space are inseparabely linked. Adding the time axis to our three-dimensional space makes our space-time-continuum four-dimensional. For decades, scientists have been wondering about the existence of additional dimensions so far hidden to our senses. Grumiller and his colleagues are trying the opposite approach: Instead of postulating additional dimensions, they believe that our universe could in fact be described by less than four dimensions.

“A hologram, as you find it on bank notes or credit cards, appears to show a three-dimensional picture, even though in fact it is just two-dimensional”, Grumiller explains. In such a case, reality has fewer dimensions than we would thinkit appears to have. This “holographic principle” plays an important role in the physics of space time. Instead of creating a theory of gravity in all the time and space dimensions, one can formulate a new quantum theory with one fewer spatial dimension. That way, a 3D theory of gravitation turns into a 2D quantum theory, in which gravity does not appear any more. Still, this quantum theory correctly predicts phenomena like black holes or gravitational waves.

2015 Update (from http://phys.org/news/2015-04-universe-hologram.html)

Everybody knows holograms from credit cards or banknotes. They are two dimensional, but to us they appear three dimensional. Our universe could behave quite similarly:

“In 1997, the physicist Juan Maldacena (pictured here) proposed the idea that there is a correspondence between Juangravitational theories in curved anti-de-sitter spaces on the one hand and quantum field theories in spaces with one fewer dimension on the other”, says Daniel Grumiller.

Gravitational phenomena are described in a theory with three spatial dimensions, the behaviour of quantum particles is calculated in a theory with just two spatial dimensions – and the results of both calculations can be mapped onto each other. Such a correspondence is quite surprising. It is like finding out that equations from an astronomy textbook can also be used to repair a CD-player. But this method has proven to be very successful. More than ten thousand scientific papers about Maldacena’s “correspondence” have been published to date.

Correspondence Even in Flat Spaces

For theoretical physics, this is extremely important, but it does not seem to have much to do with our own universe. Apparently, we do not live in such an anti-de-sitter-space. These spaces have quite peculiar properties. They are negatively curved, any object thrown away on a straight line will eventually return. “Our universe, in contrast, is quite flat – and on astronomic distances, it has positive curvature”, says Daniel Grumiller.

However, Grumiller has suspected for quite some time that a correspondence principle could also hold true for our real universe. Now Grumiller and colleagues from India and Japan have published an article in the journal Physical Review Letters, confirming the validity of the correspondence principle in a flat universe…This however, does not yet prove that we are indeed living in a hologram.
by posted under Uncategorized | Comments Off on Flat out in 3 or 4 Dimensions…    

Comments are closed.

Post Support

Largest number between o and 1 million which does not contain the ‘n’ is 88

 

Rotation SAT Problem: Answer: 4 (see: https://www.youtube.com/watch?v=FUHkTs-Ipfg)

 

Which number has its letters in alphabetical order? Answer: F O R T Y

Hidden Rabbit? Clue: check the trees

How long for the stadium to fill? 45 minutes.

Where are you? the North Pole

Prize Object Puzzle: If Sue does not know where the prize is in the first question, it can’t be under the square. She must have been told it is under another shape. Apply this same logic to Colin. It is then obvious that the prize cannot be under a yellow object. That helps Sue eliminate her yellow shapes. Got the idea?

Algebra Puzzle: Answer = 1

Popular Math Problems Answers: 1, 1

Number of tabs? According to Lifehacker, the ideal number of tabs you should have open is nine. Yes, a single digit. To some, this is like playing a piano and only using a fraction of the notes!

Worst Graph? Where to start. What a visual mess and even some of the lines merge and are impossible to follow. A graph is a visual display of data, with the goal to identify trends or patterns. This is a spider’s web of information which fails to show a clear pattern at all. Solution? Well, different colors would help, or why not group in two or three graphs where trends are similar?

Number of different nets to make a cube is eleven – see this link

Homework Puzzle; The total value of the counters is 486, so halve this to get 243. Now, arrange the counters to equal this amount twice.

The graph on the left (Coronavirus) is for a time period of 30 days, while the one on the right (SARS) is for 8 months! Very poor graphical comparison and hardly relevant, unless it is attempting to downplay the seriousness of the coronavirus?

10 x 9 x 8 + (7 + 6) x 5 x 4 x (3 + 2) x 1 = 2020

NCEA Level 2 Algebra Problem. Using the information given, the shaded area = 9, that is:
y(y-8) = 9 –> y.y – 8y – 9 =0
–> (y-9)(y+1) = 0, therefore y = 9 (can’t have a distance of – 1 for the other solution for y)
Using the top and bottom of the rectangle,
x = (y-8)(y+2) = (9-8)(9+2) = 11
but, the left side = (x-4) = 11-4 = 7, but rhs = y+? = 9+?, which is greater than the value of the opp. side??
[I think that the left had side was a mistake and should have read (x+4)?]

Archives

H3 Viewers



Skip to toolbar