A Starry, Starry Night is Full of Mathematical Swirls
The swirls in Vincent van Gogh’s famous painting “The Starry Night” might well be from his observation of how eddies flow in a stream and, if so, he captured a piece of the math that governs our universe? The dappled starlight and swirling clouds of Vincent van Gogh’s painting are usually thought to reflect the artist’s tumultuous state of mind when he painted the work in 1889.
from CNN): Now, a new analysis by physicists based in China and France suggests the artist had a deep, intuitive understanding of the mathematical structure of turbulent flow.
As a common natural phenomenon observed in fluids — moving water, ocean currents, blood flow, billowing storm clouds and plumes of smoke — turbulent flow is chaotic, as larger swirls or eddies, form and break down into smaller ones.
It may appear random to the casual observer, but turbulence nonetheless follows a cascading pattern that can be studied and, at least partially, explained using mathematical equations.
“Imagine you are standing on a bridge, and you watch the river flow. You will see swirls on the surface, and these swirls are not random. They arrange themselves in specific patterns, and these kinds of patterns can be predicted by physical laws,” said Yongxiang Huang, lead author of the study that published Tuesday in the scientific journal Physics of Fluids. Huang is a researcher at State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences at Xiamen University in southeastern China.
“The Starry Night” is an oil-on-canvas painting that, the study noted, depicts a view just before sunrise from the east-facing window of the artist’s asylum room at Saint-Rémy-de-Provence in southern France. Van Gogh had admitted himself to an asylum there after mutilating his left ear.
Using a digital image of the painting, Huang and his colleagues examined the scale of its 14 main whirling shapes to understand whether they aligned with physical theories that describe the transfer of energy from large- to small-scale eddies as they collide and interact with one another.
‘The Starry Night’ and turbulence theories
The atmospheric motion of the painted sky cannot be directly measured, so Huang and his colleagues precisely measured the brushstrokes and compared the size of the brushstrokes to the mathematical scales expected from turbulence theories. To gauge physical movement, they used the relative brightness or luminance of the varying paint colors.
They discovered that the sizes of the 14 whirls or eddies in “The Starry Night,” and their relative distance and intensity, follow a physical law that governs fluid dynamics known as Kolmogorov’s theory of turbulence.