Welcome to H3 Maths

Blog Support for Growing Mathematicians

The Privacy Puzzle Improved

July14

A team of Reed Statistics students won first place in a prestigious national competition for an innovative algorithm that helps researchers glean information from datasets—without compromising individual privacy. That right – a technique for ensuing your privacy while allowing statistical analysis of data!

Zeki Kazan ’20, Kaiyan Shi ’20, and Simon Couch ’21 (seen here) won the Undergraduate Statistics Research Project Competition for their project, “A Differentially Private Wilcoxon Signed-Rank Test,” which outlines a new algorithm for hypothesis testing that upholds the privacy of the underlying data. In fact, their technique is twice as powerful as the standard private method, meaning that it requires less than half as much data to achieve the same statistical power.

Simply put, the problem is that big databases hold immense promise for answering scientific questions, but many organizations won’t allow researchers access to them because of the risk of an inadvertent breach of privacy—even when obvious markers like name and address have been stripped away. In 2014, for example, the New York City Taxi and Limousine Commission released a giant database of taxi rides in response to a freedom-of-information request. The commission attempted to anonymize the data, but enterprising journalists were able to piece together various clues to identify rides taken by celebrities.

To understand the Reed project, you need to know that statisticians often compare two sets of data using a tool known as a hypothesis test. Each hypothesis test requires a certain amount of data before it can detect a relationship between the two sets—the less data it needs, the more statistical power it has.

Now to go deeper …

There are many different types of hypothesis tests. The Reed team focused on the Wilcoxon Signed-Rank Test, which is commonly used when there is paired-sample data—where there is a natural association between the two sets (e.g. a patient’s blood pressure before and after watching a horror movie). It compares the sets in an attempt to determine whether there is a statistically significant relationship.

The team reworked the Wilcoxon test to ensure privacy, and employed an innovative technique to reduce the amount of data it required. With these two seemingly simple tweaks, the enhanced algorithm turned out to be much more powerful, yielding significant real-world implications. When tested, their model had a statistical power that was much closer to public-setting tests: achieving the same statistical power with only 40% of the data required by the earlier private-setting model. Because of this increased efficiency, the Reed algorithm can be used on smaller datasets, whereas previous models required enormous quantities of data. (source: here). No wonder this group of math geeks look happy in the picture above!

by posted under Uncategorized | Comments Off on The Privacy Puzzle Improved    

Comments are closed.

Post Support

Rubik’s Cube answer = 43 Quintillion

 

Largest number between o and 1 million which does not contain the ‘n’ is 88

 

Rotation SAT Problem: Answer: 4 (see: https://www.youtube.com/watch?v=FUHkTs-Ipfg)

 

Which number has its letters in alphabetical order? Answer: F O R T Y

Hidden Rabbit? Clue: check the trees

How long for the stadium to fill? 45 minutes.

Where are you? the North Pole

Prize Object Puzzle: If Sue does not know where the prize is in the first question, it can’t be under the square. She must have been told it is under another shape. Apply this same logic to Colin. It is then obvious that the prize cannot be under a yellow object. That helps Sue eliminate her yellow shapes. Got the idea?

Algebra Puzzle: Answer = 1

Popular Math Problems Answers: 1, 1

Number of tabs? According to Lifehacker, the ideal number of tabs you should have open is nine. Yes, a single digit. To some, this is like playing a piano and only using a fraction of the notes!

Worst Graph? Where to start. What a visual mess and even some of the lines merge and are impossible to follow. A graph is a visual display of data, with the goal to identify trends or patterns. This is a spider’s web of information which fails to show a clear pattern at all. Solution? Well, different colors would help, or why not group in two or three graphs where trends are similar?

Number of different nets to make a cube is eleven – see this link

Homework Puzzle; The total value of the counters is 486, so halve this to get 243. Now, arrange the counters to equal this amount twice.

The graph on the left (Coronavirus) is for a time period of 30 days, while the one on the right (SARS) is for 8 months! Very poor graphical comparison and hardly relevant, unless it is attempting to downplay the seriousness of the coronavirus?

10 x 9 x 8 + (7 + 6) x 5 x 4 x (3 + 2) x 1 = 2020

NCEA Level 2 Algebra Problem. Using the information given, the shaded area = 9, that is:
y(y-8) = 9 –> y.y – 8y – 9 =0
–> (y-9)(y+1) = 0, therefore y = 9 (can’t have a distance of – 1 for the other solution for y)
Using the top and bottom of the rectangle,
x = (y-8)(y+2) = (9-8)(9+2) = 11
but, the left side = (x-4) = 11-4 = 7, but rhs = y+? = 9+?, which is greater than the value of the opp. side??
[I think that the left had side was a mistake and should have read (x+4)?]

Archives

H3 Viewers



Skip to toolbar